Some New Homogeneous Einstein Metrics on Symmetric Spaces
نویسنده
چکیده
We classify homogeneous Einstein metrics on compact irreducible symmetric spaces. In particular, we consider symmetric spaces with rank(M) > 1, not isometric to a compact Lie group. Whenever there exists a closed proper subgroup G of Isom(M) acting transitively on M we nd all G-homogeneous (non-symmetric) Einstein metrics on M .
منابع مشابه
New Examples of Homogeneous Einstein Metrics
A Riemannian metric is said to be Einstein if the Ricci curvature is a constant multiple of the metric. Given a manifold M , one can ask whether M carries an Einstein metric, and if so, how many. This fundamental question in Riemannian geometry is for the most part unsolved (cf. [Bes]). As a global PDE or a variational problem, the question is intractible. It becomes more manageable in the homo...
متن کاملOn 5-dimensional 2-step homogeneous randers nilmanifolds of Douglas type
In this paper we first obtain the non-Riemannian Randers metrics of Douglas type on two-step homogeneous nilmanifolds of dimension five. Then we explicitly give the flag curvature formulae and the $S$-curvature formulae for the Randers metrics of Douglas type on these spaces. Moreover, we prove that the only simply connected five-dimensional two-step homogeneous Randers nilmanifolds of D...
متن کاملInvariant Einstein Metrics on Some Homogeneous Spaces of Classical Lie Groups
A Riemannian manifold (M, ρ) is called Einstein if the metric ρ satisfies the condition Ric(ρ) = c · ρ for some constant c. This paper is devoted to the investigation of G-invariant Einstein metrics with additional symmetries, on some homogeneous spaces G/H of classical groups. As a consequence, we obtain new invariant Einstein metrics on some Stiefel manifolds SO(n)/SO(l), and on the symplecti...
متن کاملSome Einstein Homogeneous Riemannian Fibrations
We study the existence of projectable G-invariant Einstein metrics on the total space of G-equivariant fibrations M = G/L → G/K, for a compact connected semisimple Lie group G. We obtain necessary conditions for the existence of such Einstein metrics in terms of appropriate Casimir operators, which is a generalization of the result by Wang and Ziller about Einstein normal metrics. We describe b...
متن کاملOn Lorentzian two-Symmetric Manifolds of Dimension-four
‎We study curvature properties of four-dimensional Lorentzian manifolds with two-symmetry property‎. ‎We then consider Einstein-like metrics‎, ‎Ricci solitons and homogeneity over these spaces‎‎.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1996